Matemática Finita

Exame de 1a Época $2003 / 04(7 / 5 / 2004)$

I

Em cada questão são apresentadas quatro opções, das quais uma, e só uma, obedece às condições pedidas. Indique-a marcando \times no quadrado respectivo. Caso pretenda anular alguma resposta, escreva "Anulado" junto a essa resposta e indique, se for caso disso, a resposta que pretende que seja considerada.

1. A partição conjugada de $5+4+3+2+2+1+1$ é:

■ a) $1+1+2+2+3+4+5$
b) $5+4+4+3+2$

С c) $7+5+3+2+1$
\square d) $1+2+3+5+7$
2. Sabendo que se podem formar 10 listas ordenadas $\left(x_{1}, x_{2}, x_{3}\right), x_{1}<x_{2}<x_{3}$, formadas por 3 números naturais x_{1}, x_{2}, x_{3} entre 2 e k, conclui-se que
\square a) $k=4$.
■b) $k=5$.
$\square \mathbf{c)} k=6$.
$\square \mathrm{d}) k=7$.
3. Dados $0 \leq k \leq l \leq n$, o produto

$$
\binom{n}{l}\binom{l}{k}
$$

não é igual a
\square a) $\binom{n}{k}\binom{n-k}{l-k}$
b) $\binom{n}{k}\binom{n-l}{l-k}$
$\square \mathrm{c})\binom{n}{n-k}\binom{n-k}{n-l}$
$\square \mathrm{d})\binom{n}{n-k}\binom{n-k}{l-k}$
4. Relativamente às seguintes desigualdades,

$$
\begin{aligned}
& \text { i. } \sum_{k=1}^{n} k^{3} \geq\left(\sum_{k=1}^{n} k\right)^{2} \\
& \text { ii. } \sum_{k=1}^{n} k^{3} \leq\left(\sum_{k=1}^{n} k\right)^{2}
\end{aligned}
$$

tem-se que:
\square a) Ambas as desigualdades são sempre verdadeiras.b) A desigualdade i é sempre falsa.
\square c) A desigualdade $i i$ é sempre falsa.
\square d) A veracidade das desigualdades i, $i i$ depende de n.

II

Justifique todos os cálculos efectuados e as respostas apresentadas.
5. Considere um tabuleiro de xadrez (8×8).
5.1. De quantas maneiras se podem colocar 8 torres iguais no tabuleiro, de modo que não haja duas torres na mesma linha nem na mesma coluna?
5.2. E se as torres forem diferentes?
6. O problema "com 5 homens e com 5 mulheres, de quantas maneiras se pode formar um casal?" foi resolvido por um estudante da seguinte maneira:
"A primeira pessoa do casal pode ser escolhida de 10 maneiras, pois pode ser homem ou mulher. Escolhida a primeira pessoa, a segunda só poderá ser escolhida de 5 modos, pois deve ser de sexo diferente do da primeira pessoa. Há, portanto, $10 \times 5=$ 50 maneiras diferentes de formar um casal"

Comente esta resposta, corrigindo-a, se for caso disso.
7. Considere a soma

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{n}, \quad n \in \mathbb{N} .
$$

7.1. Mostre que

$$
S_{n}=-n S_{n-1}+n \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{n-1}, \quad n \geq 1
$$

7.2. Sabido que

$$
\sum_{k=0}^{N}(-1)^{k}\binom{N}{k} k^{m}=0
$$

sempre que $N>m \geq 0$, prove que

$$
S_{n}=(-1)^{n} n!, \quad n \geq 1
$$

por recurso ao método de indução matemática.
7.3. Mostre que para todo $\alpha \in \mathbb{N}$ tem-se

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(\alpha+k)^{n}=(-1)^{n} n!
$$

8. Considere a sucessão $\left\langle a_{n}\right\rangle$ definida pela fórmula de recorrência

$$
-a_{n}=4 a_{n-1}+3 a_{n-2}, \quad n \geq 2
$$

e pelas condições iniciais $a_{0}=0$ e $a_{1}=2$. Por recurso ao método do polinómio característico determine o termo geral da sucessão $\left\langle a_{n}\right\rangle$.
9. Dado $\alpha>0$ um número real, sejam $A(t)$ a função geradora da sucessão $\left\langle a_{n}\right\rangle$ definida por $a_{0}=1$,

$$
a_{n}=\alpha a_{n-1}, \quad n \geq 1,
$$

e $\left\langle b_{n}\right\rangle$ a sucessão definida pela função geradora $A(t)^{2}$.
9.1. Sem determinar o termo geral da sucessão $\left\langle a_{n}\right\rangle$, mostre que:
9.1.1. $b_{n}=2 a_{n}+\alpha^{2} b_{n-2}, \quad n \geq 2$;
9.1.2. $b_{n}=\alpha b_{n-1}+\alpha^{2} b_{n-2}-\alpha^{3} b_{n-3}, \quad n \geq 3$.
9.2. Por recurso ao método das funções geradoras determine o termo geral da sucessão $\left\langle b_{n}\right\rangle$.
9.3. Utilizando as alíneas anteriores, determine uma forma fechada para a função geradora $A(t)$.

